OSTEOXENON

Remodeling the Future

The new GBR standard
OSTEOXENON® is an advanced line of bone substitutes for regenerating bone in dental surgeries. OSTEOXENON® comes from a 15 years experience in Orthopedics, where this same material is grafted for huge bone reconstructions. This same biotechnological know-how and the same manufacturing process are now being applied to create bone substitutes for Oral and Maxillo-facial Surgery. OSTEOXENON® is conceived and manufactured totally in Italy.

OSTEOXENON® is an heterologous material. Its origin is equine. This choice is not a chance.

OSTEOXENON® is accepted by the patient: In a multi-ethnical population comprising people belonging to different religions, patients would not accept other bone grafts (porcine or bovine).

OSTEOXENON® is safe: the European Directive 2003/32/CE¹ defines equine-derived materials as safer, since no diseases, transmittable from horses to men, are currently known.

OSTEOXENON® is osteoconductive: Mammals share a very similar trabecular structure. Equine bones can be cut in order to achieve sections showing the same trabecular structure of human bone.

The two bone sections are identical. (Source: Bioteck Research Lab)
Enzymatic deantigenation:
Biotechnology serving the Oral Surgeon

To deantigenate means eliminating all those elements that the immune system will recognize as antigens, inducing an unwanted reaction.

OSTEOXENON® is achieved through an enzymatic deantigenation process, devised by Bioteck – a leader Company in the field of Bone Substitutes manufacturing.

The enzymatic process is an extremely advanced method. It is based on the application of last-generation biotechnological processes. Mixtures of lytic enzymes clean up animal bone from any antigenic component, making it totally biocompatible.

OSTEOXENON®
The enzymatic process eliminates all cells.
(SEM Service, Biology Dept, Padova University, Italy and Prof. N. Pennelli Histological Lab, Padova, Italy)

The enzymatic process has two main features: the temperature applied is 37°C and the process is selective. These features give OSTEOXENON® unique-in-the-world-properties, as far as both biological response and clinical outcome are concerned.

Manufacturing process
OSTEOXENON®

Scanning Electron Microscopy

Hematoxylin-eosin staining

Total remodeling
Enzymes work in a water solution at 37°C (physiologic conditions).

The mineral component undergoes no modification, either chemical or physical.

The material is not only biocompatible. The mineral component is recognized by osteoclasts as endogenous. After 6-12 months all the grafted material is remodeled and replaced by the bone of the patient.

A real bone regeneration is achieved. Not only grafting a scaffold, but a true restitutio ad integrum of the lost tissue. If osseointegrated implants are going to be placed, they will be inserted into the patient’s bone, without the presence of any exogenous material.

Collagen effects
By adapting the composition of the enzymatic mixture, the process can be made selective (some molecular families can be preserved).

The collagen component (Type I Bone Collagen) is totally preserved.

Type I bone collagen stimulates a great number of cellular and sub-cellular processes which are at the basis of bone regeneration.

The probability of success of regenerative surgery will be greater, since the biological conditions are optimal.
Some manufacturers apply a thermal deantigenation process, heating the material at a very high temperature (greater than 600°C!). The organic component sublimes, and can be easily withdrawn. Unfortunately such method causes some chemical and physical modifications to the mineral bone component, altering both its morphology and mechanical properties. Biological properties are compromised: thermal processed bone biomaterials are not only fragile, but also very slowly resorbable, not permitting to achieve a real bone regeneration.

OSTEOXENON®

The material is identical to human bone (all cells are eliminated by the enzymatic deantigenation).

Hematoxylin-eosin staining (20x). Dr. Tshering Dorji, Milano, Italy.

**Preserving bone structure**

**OSTEOXENON®**

The surface of granules is deeply altered. Their appearance is totally unnatural.

Hematoxylin-eosin staining (20x). Dr. Tshering Dorji, Milano, Italy.

**Thermally deproteinized bovine bone**

OSTEOXENON®

The surface of granules is homogeneous, showing no fracture lines.

SEM Service, Biology Dept, Padova University, Italy.

**OSTEOXENON®**

The surface appears somewhat “dusty”. The granule is clearly fragile.

SEM Service, Biology Dept, Padova University, Italy.

**Thermally deproteinized bovine bone**
Grafting bone collagen into the defect creates a precise biological condition: osteoblasts themselves, in fact, produce a collagen fiber which is then mineralized by Calcium salts. The same tridimensional structure of the collagen fiber allows the crystal formation through a physical process called epitaxy.

Beyond this physical effect, collagen exerts also many important biological actions:

- Interacts with the beta 1 subunit of the integrins of the cellular surface of the osteoblasts to foster adhesion of the cells to the grafted material
- Acts as a coactivator necessary for the action of the morphogenetic proteins (BMPs) to foster the stimulating action of the endogenous growth factors
- Binds the soluble growth factors, turning them into insoluble factors: it thus protects them from proteolysis and increases their half-life, lengthening the duration of regenerative stimulation
- Controls access of the extracellular factors to the bone crystal being formed, physiologically modulating bone mineralization
- Modulates transduction of the proliferation and differentiation signal in the osteoblastic cells, controlling the remodeling process
- Interacts with the mesenchymal cells coming from the bone marrow, inducing their adhesion, proliferation and differentiation in osteoblasts
- Promotes bone regeneration when grafted in bone defects, wielding a direct pro-regenerative action
- It can even stimulate the expression of the coding genes for receptor II of the BMPs, making the cells more sensitive to the regenerating signals

Osteoblasts produce a great amount of collagen matrix that becomes a substrate for the deposition of Calcium salts. A. osteoblast portion B. collagen fibers (still not mineralized) C. mineralized collagen fibers

Epitaxy of the OX® series.

When grafted in rat’s muscles OX® bone substitutes induce the formation of Calcium salts crystals. Probably this is catalyzed by the same presence of native collagen in the grafts.

Dept. of Biomedical Experimental Sciences, Padova University, Italy.

Bone collagen presence in the OX® bone grafts can be shown also through polarized light: collagen fibers, having a regular structure, show a typical refringence that makes them appear brighter.

Prof. N. Pennelli Histological Lab, Padova, Italy.
From biological benefits to clinical success

**OSTEOXENON®** gives clinical success a biological rationale

**OSTEOXENON®** bone grafts provide the oral surgeon with the real answers a bone substitute should give:

- total replacement with the own patient’s bone (total remodeling)
- total volume preservation
- regenerative stimulation

**Total replacement**

**OSTEOXENON®** is remodeled and resorbed through the action of osteoclasts.

This occurs following a totally physiologic kinetic: as the patient’s bone remodels in 6-12 months, the same happens to **OSTEOXENON®**: after this period of time it is totally replaced by the bone of the patient.

This is possible since **OX®**, unlike other materials, is recognized as an optimal substrate by osteoclasts, which remodel it in a physiological way. Only in this case, in fact, the process can end with the complete substitution of the graft.

Adjacent post-extractive sockets. **OX®** (position 46) and deproteinized bovine bone (position 47). X-rays and 6-months second surgery. Bovine bone did not undergo remodeling, and discrete granules can be still observed. **OX®** instead underwent total remodeling, being replaced by the bone of the patient. *(Dr. M. Ludovichetti, Padova, Italy)*

If the material remodels physiologically, no volume loss can be observed. If resorption is too fast (for example, as it happens with Calcium Sulphate), or too slow (like it happens with hydroxyapatite), the endogenous bone volume is never equal to the volume grafted. **OSTEOXENON®**, instead, undergoing osteoclastic remodeling, allows to preserve the volume being grafted.

**Volume preservation**

**OSTEOXENON®**, since it contains native type I bone collagen, creates the best condition for bone regeneration to occur.

But it provides also the oral surgeon with the possibility of stimulating the regenerative process with osteopromoting DBMs (Demineralized Bone Matrixes) that prompt the osteogenic process.

In vitro studies showed, in fact, that their action is based on the stimulation of blood vessels endothelial cells to migrate into the graft, and of bone marrow cells to express pro-regenerative growth factors.

There is a first evidence of their capability of accelerating bone regeneration.

Surely this allows to increase the probability of success of bone regeneration surgeries.

**Regenerative stimulation**

Bone regeneration, osteopromoting DBMs added. Results after 6 months. The quality of the regenerated tissue is easily appreciable from the hematoxylin-eosin staining. *(Prof. Danilo Alessio Di Stefano, Milan, Italy)*

**Results**


7. Sampath TK, Reddi AH. Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation. PNAS 1981 Dec;78(12):7599-603


The products

Once grafted, OX® bone substitutes behave according to the physiologic kinetic of patient’s bone remodeling, and are completely replaced by newly-formed bone in a natural time.

OX® Granules
> OX37 Cancellous granules
  1 bottle - 0.25 g = 0.5 cc
granules 0.5/1 mm
> OX30 Cancellous granules
  1 bottle - 0.5 g = 1 cc
granules 0.5/1 mm
> OX33 Cancellous granules
  1 bottle - 1 g = 2 cc
granules 2/3 mm
> OX34 Cancellous granules
  1 bottle - 2 g = 4 cc
granules 0.5/1 mm
> OX39 Cancellous granules
  1 bottle - 2 g = 4 cc
granules 2/3 mm
> OX40 Cortical granules
  1 bottle - 0.5 g = 1 cc
granules 0.5/1 mm
> OX50 Cortical-cancellous Mix
  1 bottle - 0.25 g = 0.5 cc
granules 0.5/1 mm
> OX51 Cortical-cancellous Mix
  1 bottle - 0.5 g = 1 cc
granules 0.5/1 mm
> OX52 Cortical-cancellous Mix
  1 bottle - 1 g = 2 cc
granules 0.5/1 mm
> OX41 Cortical-cancellous Mix
  1 bottle - 2 g = 4 cc
granules 0.5/1 mm
> OMC-030 Calcitos
  6 bottles - 0.5 g = 1 cc
granules 0.5/1 mm

OX® Flex
> OX01 Cancellous
  1 pc 25 x 25 x 3 mm
> OX02 Cortical
  1 pc 25 x 25 x 2-2.5 mm

OX® Mix gel
> OX21 Cancellous
  2 syringes, 0.25 ml each
> OX22 Cortical
  2 syringes, 0.50 ml each

OX® Cancellous Blocks

OX® Membrane
> BCG-XC30 Collagen
  1 membrane 30 x 25 x 0.2 mm
> HRT-001 Pericardium
  1 membrane 30 x 25 x 0.2 mm
> HRT-002 Pericardium
  1 membrane 50 x 20 x 0.2 mm
> HRT-003 Pericardium
  2 membranes 15 x 20 x 0.2 mm
> OX03 Cortical
  1 membrane 25 x 25 x 0.2 mm
> OX04 Cortical
  1 membrane 50 x 25 x 0.2 mm

OX® Angiostad DBM
> OX11 Osteopromoting gel
  2 syringes, 0.50 ml each

OX® Granules
> OX14 Osteopromoting granules
  1 bottle, 0.5 cc